General Equilibrium Computational Exercise

In doing applied microeconomics you often have to compute equilibria of models that don't have closed-form solutions. The computation therefore must be done by iterative numerical methods. That's what you'll do in this exercise, for the Cobb-Douglas example in the semester's first lecture. The iterative computation is pretty straightforward, because there are only two goods and the demand functions have simple closed-form solutions. Moreover, the equilibrium itself has a closed-form solution, so you can also have your program compute the equilibrium prices directly and then check whether your iterative program converges to the correct equilibrium prices.

Specifically, you are to use a spreadsheet program such as Excel, or a programming language such as C+ or Pascal, to compute the path taken by prices and excess demands in the two-person, two-good, pure exchange Cobb-Douglas example from the first lecture, assuming that prices adjust according to the transition function in the Gale-Nikaido proof of existence of equilibrium:

$$f(p) = \frac{1}{\sum_{k=1}^{l} [p_k + M_k(p)]} [p + M(p)]$$

where $M_k(p) = \max\{0, \lambda z_k(p)\}$ for each good *k*.

Note that the proof did not actually include a λ , *i.e.*, we could assume that $\lambda = 1$. However, with $\lambda = 1$ the iterative process defined by this transition function will not converge for the Cobb-Douglas example, as you can verify once you've created your computational program. You'll find that to achieve convergence you'll need to use a λ equal to about .02 or smaller. Recall, too, that the proof does not actually apply to the Cobb-Douglas example, because demands are not defined for the price-lists (1,0) and (0,1). For the same reason, you can't start the iterative process off using either of these as the initial price-lists, because the "next p" defined by f(p) won't be well-defined.

You will of course have to use specific parameter values for the two consumers' utility functions and endowment bundles. With a small enough value for λ , the process will converge for just about any parameter values and any strictly positive initial prices. Of course, when you run your program you should note whether it does converge to the equilibrium price-list.

Choose some specific parameter values and initial price-list, and plot (by hand) the priceline and the chosen bundles in the Edgeworth Box for several iterations of the process. Note that if the prices aren't sufficiently close to the equilibrium prices, the chosen bundles may not lie within the confines of the box. This is an important point to understand: each individual consumer simply takes the prices as given and chooses his or her best bundle within the resulting budget set. The consumer takes no account of the total resources available, nor of the other consumers' preferences or choices, because the consumer isn't assumed to have that information. COBB-DOUGLAS UTILITIES: U(X,Y)= XªY^{1-a} = XªY^b a+b=1 THE EXAMPLE FROM THE FIRST LECTURE 2

							rho	t
	a1 =	0.875	a2 =	0.5			0.11	1
	x1 =	40	x2 =	80 7/5			0.961111	2
	y1 =	80	y2 =	40 5	·) / ·		1.915027	3
	•						1.973232	4
	b1 =	0.125	b2 =	0.5			1.991382	5
	a1*y1 =	70	a2*y2 =	20			1.997208	6
	b1*x1 =	5	b2*x2 =	40			1.999093	7
							1.999705	8
	Num =	90					1.999904	9
	Den =	45					1.999969	10
	-						1.999990	11
	K1 =	0.01	K2 =	0.01			1.999997	12
			_				1.999999	13
>	Eqm rho =	2	teom close	D-Form Sol	TION		2.000000	14
							2.000000	15
		セ=		Initial prices:	px =	1	2.000000	16
					ру =	9	2.000000	17
					rho =	0.111111	2.000000	18
		005		440	NI-4 X/	705	2.000000	19
	Net $x1 =$	625	Net x2 =	140	Net X =	765	2.000000	20
	Net y1 =	-69.4444	Net y2 =	-15.5556	Net Y = Mx =	<u>-85</u> 7.65	2.000000 2.000000	21
							2.000000	22
					My = px+Mx =	<u> </u>		
					px+Mx = py+My =	9		
					Sum =	17.65		
					New px =	0.490085		
					New py =	0.509915		
				t=2 ~>	rho =	0.961111		
	Net x1 =	67.83237	Net x2 =	-19.1908	Net X =	48.64162	_	
	Net y1 =	-65.1944	Net y2 =	18.4444	Net Y =	-46.75	*Pz	
					Mx =	0.486416	1 P(1)	>
					My =	0		
					px+Mx =	0.976501		p(2)
					py+My =	0.509915		- P(3)
					Sum =	1.486416		
					New px =	0.65695 0.34305	13	< '
				t=3 ->	New py = rho =	1.915027		\mathbf{X}
				1-3 -7	110 -	1.313027	2)	10
	Net x1 =	31.553	Net x2 =	-29.5563	Net X =	1.996719	2/2	s I P _I
	Net y1 =	-60.4249	Net y2 =	56.60109	Net Y =	-3.82377		
			, <u>,</u>		Mx =	0.019967		
					My =	0		
					px+Mx =	0.676917		
					py+My =	0.34305		
					Sum =	1.019967		
					New px =	0.663666	- ALREADY C	LOSE TO
					New py =	0.336334	$P_1 = \frac{7}{3}$	
				,			د ۲۰	5 2 2
							6=7	
				•			\ -	